Sebagaimana Wasiat dari Alfred Nobel, Penghargaan Nobel diberikan kepada orang-orang yang membuat penemuan paling penting dalam bidang Fisika. Inilah hadiah nobel yang paling bisa dipercaya pelaksanaannya, tidak seperti Nobel perdamaian yang sering kontroversial, karena panitia nobel fisika sangat berhati hati dalam menentukan siapa yang pantas diberi Nobel. Saking hati hatinya, Albert Einstein tidak pernah diberi nobel untuk teori Relativitasnya yang terkenal, karena panitia pada waktu itu masih kurang yakin. Hadiah Nobel diberikan tiap tahun kecuali di tahun 1916, 1931, 1934, 1940, 1941 dan 1942.
Dalam Ilmu Pengetahuan, ilmuwan berlomba lomba untuk mengumumkan penemuan/teori baru. Karena kalau tidak segera diumumkan, pastilah ilmuwan lain, cepat atau lambat juga akan menemukannya. Oleh karena itu, tidak ada yang disembunyikan kepada publik dalam bidang science. Tidak seperti teknologi, yang boleh jadi disembunyikan kepada publik sampai waktu tertentu, apalagi kalau teknologi tersebut berkaitan dengan senjata militer.
Apa beda science dan teknologi? jawaban sederhananya begini: Apa kesamaan pesawat amerika dengan pesawat rusia? yang sama adalah ilmu membuatnya. Jadi teknologi adalah kreativitas memanfaatkan science untuk menciptakan alat yang membantu manusia meningkatkan peradaban.
Jadi kalau bangsa ini ingin lebih maju dalam teknologi dari bangsa lain, maka PELAJARILAH ILMUNYA, karena jika kita mempelajari teknologi dari bangsa lain, pasti selamanya kita akan mengekor.
Kapan ya, nama anak bangsa ini bisa tertulis disini ... saya harap tidak lama lagi .. amin
2011: was divided, one half awarded to Saul Perlmutter, the other half jointly to Brian P. Schmidt and Adam G. Riess "for the discovery of the accelerating expansion of the Universe through observations of distant supernovae".
2010: Andre Geim and Konstantin Novoselov, "for groundbreaking experiments regarding the two-dimensional material graphene."
2009: Charles K. Kao, "for groundbreaking achievements concerning the transmission of light in fibers for optical communication," and Willard S. Boyle and George E. Smith, "for the invention of an imaging semiconductor circuit – the CCD sensor."
2008: Yoichiro Nambu, "for the discovery of the mechanism of spontaneous broken symmetry in subatomic physics," and Makoto Kobayashi, Toshihide Maskawa, "for the discovery of the origin of the broken symmetry which predicts the existence of at least three families of quarks in nature."
2007: Albert Fert and Peter Grünberg, "for the discovery of Giant Magnetoresistance"
2006: John C. Mather and George F. Smoot, "for their discovery of the blackbody form and anisotropy of the cosmic microwave background radiation."
2005: Roy J. Glauber, "for his contribution to the quantum theory of optical coherence," and John L. Hall and Theodor W. Hänsch, "for their contributions to the development of laser-based precision spectroscopy, including the optical frequency comb technique."
2004: David J. Gross, H. David Politzer and Frank Wilczek, "for the discovery of asymptotic freedom in the theory of the strong interaction."
2003: Alexei A. Abrikosov, Vitaly L. Ginzburg and Anthony J. Leggett, "for pioneering contributions to the theory of superconductors and superfluids."
2002: Raymond Davis Jr. and Masatoshi Koshiba, "for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos," and Riccardo Giacconi, "for pioneering contributions to astrophysics, which have led to the discovery of cosmic X-ray sources."
2001: Eric A. Cornell, Wolfgang Ketterle and Carl E. Wieman, "for the achievement of Bose-Einstein condensation in dilute gases of alkali atoms, and for early fundamental studies of the properties the condensates."
2000: Zhores I. Alferov and Herbert Kroemer, "for developing semiconductor heterostructures used in high-speed- and opto-electronics," and Jack S. Kilby "for his part in the invention of the integrated circuit."
1999: Gerardus 't Hooft and Martinus J.G. Veltman, "for elucidating the quantum structure of electroweak interactions in physics."
1998: Robert B. Laughlin, Horst L. Störmer and Daniel C. Tsui, "for their discovery of a new form of quantum fluid with fractionally charged excitations."
1997: Steven Chu, Claude Cohen-Tannoudji and William D. Phillips, "for development of methods to cool and trap atoms with laser light."
1996: David M. Lee, Douglas D. Osheroff and Robert C. Richardson, "for their discovery of superfluidity in helium-3."
1995: Martin L. Perl, "for the discovery of the tau lepton," and Frederick Reines, "for the detection of the neutrino."
1994: Bertram N. Brockhouse, "for the development of neutron spectroscopy," and Clifford G. Shull, "for the development of the neutron diffraction technique."
1993: Russell A. Hulse and Joseph H. Taylor Jr., "for the discovery of a new type of pulsar, a discovery that has opened up new possibilities for the study of gravitation."
1992: Georges Charpak, "for his invention and development of particle detectors, in particular the multiwire proportional chamber."
1991: Pierre-Gilles de Gennes, "for discovering that methods developed for studying order phenomena in simple systems can be generalized to more complex forms of matter, in particular to liquid crystals and polymers."
1990: Jerome I. Friedman, Henry W. Kendall and Richard E. Taylor, "for their pioneering investigations concerning deep inelastic scattering of electrons on protons and bound neutrons, which have been of essential importance for the development of the quark model in particle physics."
1989: Norman F. Ramsey, "for the invention of the separated oscillatory fields method and its use in the hydrogen maser and other atomic clocks," and Hans G. Dehmelt and Wolfgang Paul, "for the development of the ion trap technique."
1988: Leon M. Lederman, Melvin Schwartz and Jack Steinberger, "for the neutrino beam method and the demonstration of the doublet structure of the leptons through the discovery of the muon neutrino."
1987: J. Georg Bednorz and K. Alexander Müller, "for their important break-through in the discovery of superconductivity in ceramic materials."
1986: Ernst Ruska, "for his fundamental work in electron optics, and for the design of the first electron microscope," and Gerd Binnig and Heinrich Rohrer, "for their design of the scanning tunneling microscope."
1985: Klaus von Klitzing, "for the discovery of the quantized Hall effect".
1984: Carlo Rubbia and Simon van der Meer, "for their decisive contributions to the large project, which led to the discovery of the field particles W and Z, communicators of weak interaction."
1983: Subramanyan Chandrasekhar, "for his theoretical studies of the physical processes of importance to the structure and evolution of the stars," and William Alfred Fowler, "for his theoretical and experimental studies of the nuclear reactions of importance in the formation of the chemical elements in the universe."
1982: Kenneth G. Wilson, "for his theory for critical phenomena in connection with phase transitions."
1981: Nicolaas Bloembergen and Arthur Leonard Schawlow, "for their contribution to the development of laser spectroscopy," and Kai M. Siegbahn, "for his contribution to the development of high-resolution electron spectroscopy."
1980: James Watson Cronin and Val Logsdon Fitch, "for the discovery of violations of fundamental symmetry principles in the decay of neutral K-mesons."
1979: Sheldon Lee Glashow, Abdus Salam and Steven Weinberg, "for their contributions to the theory of the unified weak and electromagnetic interaction between elementary particles, including, inter alia, the prediction of the weak neutral current."
1978: Pyotr Leonidovich Kapitsa, "for his basic inventions and discoveries in the area of low-temperature physics," and Arno Allan Penzias, Robert Woodrow Wilson "for their discovery of cosmic microwave background radiation."
1977: Philip Warren Anderson, Sir Nevill Francis Mott and John Hasbrouck van Vleck, "for their fundamental theoretical investigations of the electronic structure of magnetic and disordered systems."
1976: Burton Richter and Samuel Chao Chung Ting, "for their pioneering work in the discovery of a heavy elementary particle of a new kind."
1975: Aage Niels Bohr, Ben Roy Mottelson and Leo James Rainwater, "for the discovery of the connection between collective motion and particle motion in atomic nuclei and the development of the theory of the structure of the atomic nucleus based on this connection."
1974: Sir Martin Ryle and Antony Hewish, "for their pioneering research in radio astrophysics: Ryle for his observations and inventions, in particular of the aperture synthesis technique, and Hewish for his decisive role in the discovery of pulsars."
1973: Leo Esaki and Ivar Giaever, for "for their experimental discoveries regarding tunneling phenomena in semiconductors and superconductors, respectively," and Brian David Josephson, "for his theoretical predictions of the properties of a supercurrent through a tunnel barrier, in particular those phenomena which are generally known as the Josephson effects."
1972: John Bardeen, Leon Neil Cooper, John Robert Schrieffer, "for their jointly developed theory of superconductivity, usually called the BCS-theory."
1971: Dennis Gabor, "for his invention and development of the holographic method."
1970: Hannes Olof Gösta Alfvén, "for fundamental work and discoveries in magnetohydro- dynamics with fruitful applications in different parts of plasma physics," and Louis Eugène Félix Néel, "for fundamental work and discoveries concerning antiferromagnetism and ferrimagnetism which have led to important applications in solid state physics."
1969: Murray Gell-Mann, "for his contributions and discoveries concerning the classification of elementary particles and their interactions."
1968: Luis Walter Alvarez, "for his decisive contributions to elementary particle physics, in particular the discovery of a large number of resonance states, made possible through his development of the technique of using hydrogen bubble chamber and data analysis."
1967: Hans Albrecht Bethe, "for his contributions to the theory of nuclear reactions, especially his discoveries concerning the energy production in stars."
1966: Alfred Kastler, "for the discovery and development of optical methods for studying Hertzian resonances in atoms."
1965: Sin-Itiro Tomonaga, Julian Schwinger and Richard P. Feynman, "for their fundamental work in quantum electrodynamics, with deep-ploughing consequences for the physics of elementary particles."
1964: Charles Hard Townes, "for fundamental work in the field of quantum electronics, which has led to the construction of oscillators and amplifiers based on the maser-laser principle," and Nicolay Gennadiyevich Basov and Aleksandr Mikhailovich Prokhorov, "for fundamental work in the field of quantum electronics, which has led to the construction of oscillators and amplifiers based on the maser-laser principle."
1963: Eugene Paul Wigner, "for his contributions to the theory of the atomic nucleus and the elementary particles, particularly through the discovery and application of fundamental symmetry principles," and Maria Goeppert-Mayer and J. Hans D. Jensen, "for their discoveries concerning nuclear shell structure."
1962: Lev Davidovich Landau, "for his pioneering theories for condensed matter, especially liquid helium."
1961: Robert Hofstadter, "for his pioneering studies of electron scattering in atomic nuclei and for his thereby achieved discoveries concerning the structure of the nucleons," and Rudolf Ludwig Mössbauer, "for his researches concerning the resonance absorption of gamma radiation and his discovery in this connection of the effect which bears his name."
1960: Donald Arthur Glaser, "for the invention of the bubble chamber."
1959: Emilio Gino Segrè and Owen Chamberlain, "for their discovery of the antiproton."
1958: Pavel Alekseyevich Cherenkov, Il´ja Mikhailovich Frank and Igor Yevgenyevich Tamm, "for the discovery and the interpretation of the Cherenkov effect."
1957: Chen Ning Yang and Tsung-Dao (T.D.) Lee, "for their penetrating investigation of the so-called parity laws which has led to important discoveries regarding the elementary particles."
1956: William Bradford Shockley, John Bardeen and Walter Houser Brattain, "for their researches on semiconductors and their discovery of the transistor effect."
1955: Willis Eugene Lamb, "for his discoveries concerning the fine structure of the hydrogen spectrum," and Polykarp Kusch, "for his precision determination of the magnetic moment of the electron."
1954: Max Born, "for his fundamental research in quantum mechanics, especially for his statistical interpretation of the wavefunction," and Walther Bothe, "for the coincidence method and his discoveries made therewith."
1953: Frits (Frederik) Zernike, "for his demonstration of the phase contrast method, especially for his invention of the phase contrast microscope."
1952: Felix Bloch and Edward Mills Purcell, "for their development of new methods for nuclear magnetic precision measurements and discoveries in connection therewith."
1951: Sir John Douglas Cockcroft and Ernest Thomas Sinton Walton, "for their pioneer work on the transmutation of atomic nuclei by artificially accelerated atomic particles."
1950: Cecil Frank Powell, "for his development of the photographic method of studying nuclear processes and his discoveries regarding mesons made with this method."
1949: Hideki Yukawa, "for his prediction of the existence of mesons on the basis of theoretical work on nuclear forces."
1948: Patrick Maynard Stuart Blackett, "for his development of the Wilson cloud chamber method, and his discoveries therewith in the fields of nuclear physics and cosmic radiation."
1947: Sir Edward Victor Appleton, "for his investigations of the physics of the upper atmosphere especially for the discovery of the so-called Appleton layer."
1946: Percy Williams Bridgman, "for the invention of an apparatus to produce extremely high pressures, and for the discoveries he made therewith in the field of high pressure physics."
1945: Wolfgang Pauli, "for the discovery of the Exclusion Principle, also called the Pauli Principle."
1944: Isidor Isaac Rabi, "for his resonance method for recording the magnetic properties of atomic nuclei."
1943: Otto Stern, "for his contribution to the development of the molecular ray method and his discovery of the magnetic moment of the proton."
1940-1942: No Prizes awarded.
1939: Ernest Orlando Lawrence, "for the invention and development of the cyclotron and for results obtained with it, especially with regard to artificial radioactive elements."
1938: Enrico Fermi, "for his demonstrations of the existence of new radioactive elements produced by neutron irradiation, and for his related discovery of nuclear reactions brought about by slow neutrons."
1937: Clinton Joseph Davisson and George Paget Thomson, "for their experimental discovery of the diffraction of electrons by crystals."
1936: Victor Franz Hess, "for his discovery of cosmic radiation," and Carl David Anderson, "for his discovery of the positron."
1935: James Chadwick, "for the discovery of the neutron."
1934: No Prize awarded
1933: Erwin Schrödinger and Paul Adrien Maurice Dirac, "for the discovery of new productive forms of atomic theory."
1932: Werner Karl Heisenberg, "for the creation of quantum mechanics, the application of which has, inter alia, led to the discovery of the allotropic forms of hydrogen."
1931: No Prize awarded
1930: Sir Chandrasekhara Venkata Raman, "for his work on the scattering of light and for the discovery of the effect named after him"
1929: Prince Louis-Victor Pierre Raymond de Broglie, "for his discovery of the wave nature of electrons."
1928: Owen Willans Richardson, "for his work on the thermionic phenomenon and especially for the discovery of the law named after him."
1927: Arthur Holly Compton, "for his discovery of the effect named after him," and Charles Thomson Rees Wilson, "for his method of making the paths of electrically charged particles visible by condensation of vapor."
1926: Jean Baptiste Perrin, "for his work on the discontinuous structure of matter, and especially for his discovery of sedimentation equilibrium."
1925: James Franck and Gustav Ludwig Hertz, "for their discovery of the laws governing the impact of an electron upon an atom."
1924: Karl Manne Georg Siegbahn, "for his discoveries and research in the field of X-ray spectroscopy."
1923: Robert Andrews Millikan, "for his work on the elementary charge of electricity and on the photoelectric effect."
1922: Niels Henrik David Bohr, "for his services in the investigation of the structure of atoms and of the radiation emanating from them."
1921: Albert Einstein, "for his services to Theoretical Physics, and especially for his discovery of the law of the photoelectric effect."
1920: Charles Edouard Guillaume, "in recognition of the service he has rendered to precision measurements in Physics by his discovery of anomalies in nickel steel alloys."
1919: Johannes Stark, "for his discovery of the Doppler effect in canal rays and the splitting of spectral lines in electric fields."
1918: Max Karl Ernst Ludwig Planck, "in recognition of the services he rendered to the advancement of Physics by his discovery of energy quanta."
1917: Charles Glover Barkla, "for his discovery of the characteristic Röntgen radiation of the elements."
1916: No Prize awarded.
1915: Sir William Henry Bragg and William Lawrence Bragg, "for their services in the analysis of crystal structure by means of X-rays."
1914: Max von Laue, "for his discovery of the diffraction of X-rays by crystals."
1913: Heike Kamerlingh Onnes, "for his investigations on the properties of matter at low temperatures which led, inter alia, to the production of liquid helium."
1912: Nils Gustaf Dalén, "for his invention of automatic regulators for use in conjunction with gas accumulators for illuminating lighthouses and buoys."
1911: Wilhelm Wien, "for his discoveries regarding the laws governing the radiation of heat."
1910: Johannes Diderik van der Waals, "for his work on the equation of state for gases and liquids."
1909: Guglielmo Marconi and Karl Ferdinand Braun, "in recognition of their contributions to the development of wireless telegraphy."
1908: Gabriel Lippmann, "for his method of reproducing colors photographically based on the phenomenon of interference."
1907: Albert Abraham Michelson, "for his optical precision instruments and the spectroscopic and metrological investigations carried out with their aid."
1906: Joseph John Thomson, "in recognition of the great merits of his theoretical and experimental investigations on the conduction of electricity by gases."
1905: Philipp Eduard Anton von Lenard, "for his work on cathode rays."
1904: Lord Rayleigh (John William Strutt), "for his investigations of the densities of the most important gases and for his discovery of argon in connection with these studies."
1903: Antoine Henri Becquerel, " "in recognition of the extraordinary services he has rendered by his discovery of spontaneous radioactivity," and Pierre Curie and Marie Curie, née Sklodowska, "in recognition of the extraordinary services they have rendered by their joint researches on the radiation phenomena discovered by Professor Henri Becquerel."
1902: Hendrik Antoon Lorentz and Pieter Zeeman, "in recognition of the extraordinary service they rendered by their researches into the influence of magnetism upon radiation phenomena."
1901: Wilhelm Conrad Röntgen, "in recognition of the extraordinary services he has rendered by the discovery of the remarkable rays subsequently named after him."
Hanya beberapa orang yang orang asia, dan hanya satu yang muslim yang pernah mendapat hadiah Nobel dalam bidang Fisika ...
source: Nobelprize.org
Alam adalah ayat-ayatNYA yang mungkin bukan tertulis, namun indah terlukis oleh 'pena' Sang Pencipta
Alam adalah ayat-ayatNYA yang mungkin tidak tersurat, namun indah tergurat oleh Qalam Sang Maha Agung
Alam adalah ayat-ayat dari sang Maha Guru untuk 'murid-murid'NYA yang mau membaca .........
Thursday, October 13, 2011
Popular Posts
-
Postingan kali ini berusaha menjelaskan beda antara Punden Berundak, Step Piramid dan True Piramid. Nenek moyang bangsa Indonesia lebih meng...
-
Aqueducts (kadang-kadang disebut jembatan air) yang dapat dilayari adalah struktur jembatan yang membawa kanal perairan yang dapat dilayari ...
-
Tiap anak yang bermain di pantai biasanya menuliskan namanya di pasir, dan tak lama kemudian tulisan itu terhapus oleh air laut. Namun tidak...
-
Banyak kumbang kura-kura ( tortoise beetle ) memiliki kutikula transparan, penutup luar yang keras tapi fleksibel yang memberikan keluarga s...
-
Bagaimana Volcanic Lightning atau petir di awan letusan gunung terjadi? Postingan kali ini berusaha menjelaskan bagaimana terjadinya volc...
-
Berikut adalah beberapa penampakan benda terbang tak dikenal yang tercatat dalam sejarah kerajaan Romawi. Gambar-gambar hanya ilustrasi
-
Bryce Canyon National Park berlokasi di barat daya Utah, Amerika Serikat. Bryce Canyon , meskipun namanya Canyon atau ngarai, adalah amfitea...
-
Vlad III lahir pada tahun 1431 di Transylvania, sebuah daerah pegunungan yang sekarang masuk wilayah Rumania. Ayahnya adalah Vlad Dracul II,...
-
Serangkaian pahatan unta yang dipahat pada tebing batu di Arab Saudi kemungkinan merupakan relief hewan berskala besar tertua di dunia, kata...
-
Kilat Catatumbo atau Catatumbo Lightning adalah salah satu fenomena alam yang paling keren di bumi. Fenomena ini terjadi di atas kawasan ya...